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Resumo
A reação álcalis-agregado (AAR) constitui um mecanismo de 
degradação proeminente das estruturas de betão, que resulta da 
dissolução de silicatos de agregados reativos e da formação associada 
de geles expansivos, que provocam danos. Devido à natureza 
complexa da AAR, são ambíguos os fatores que mais contribuem para 
a sua ocorrência, na escala global. Por outro lado, a monitorização 
das estruturas de betão, na Finlândia, só recentemente começou 
a adaptar-se à realidade de que a AAR ocorre muitas vezes em 
simultâneo com outros processos de deterioração, como degradação 
por ciclos de gelo-degelo, destacando a necessidade de avaliação 
crítica dos métodos atuais para identificar a ocorrência de AAR e 
distingui-la dos outros mecanismos. A aprendizagem automática 
(ML) constitui uma ferramenta, baseada em dados, para avaliar 
a importância relativa desses dados e prever a sua influência nos 
danos provocados pela AAR. Com base na aprendizagem anterior, 
baseada em dados bem definidos de previsão das propriedades 
do betão, como a resistência à compressão e tempo de cura, o 
trabalho pretende avaliar a viabilidade de estender os métodos de 
ML para previsões relevantes sobre os efeitos da AAR. Os resultados 
fornecem novos elementos sobre várias características do betão que 
são relevantes para a ocorrência de AAR e estabelecem uma base 
para trabalhos futuros, para estender e melhorar as previsões, em 
complemento da monitorização e da gestão das estruturas de betão.

Abstract
Alkali-aggregate reaction (AAR) is a prominent degradation 
mechanism of concrete structures, which results from the dissolution 
of reactive silicate aggregates and the associated formation of 
damaging, expansive AAR gels. Due to the complex nature of AAR 
reactions, it has remained ambiguous which factors contribute 
the most to its occurrence on a global scale. Similarly, concrete 
monitoring in Finland has only recently begun to adapt to the 
reality that AAR often occurs concomitantly with other degradation 
mechanisms such as freeze-thaw damage, highlighting the need for 
critical evaluation of current methods to identify AAR occurrence and 
distinguish it from these other mechanisms. Machine learning (ML) 
provides a data-driven framework for both evaluating the relative 
“importance” of various data features, as well as predicting their 
consequent influence on AAR damage to concrete. Building on the 
success of previous such data-driven learning for the prediction of 
well-defined concrete properties such as compressive strength and 
setting time, the current work evaluates the feasibility of extending 
ML methods to AAR-relevant predictions. Results provide new 
insights into several of the most relevant concrete characteristics 
linked with AAR occurrence, and establish a basis for future work to 
extend and enhance such predictions to supplement monitoring and 
risk management of concrete structures.
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1 Introduction
Alkali aggregate reaction (AAR), also commonly referred to as 
alkali silica reaction (ASR), is a prevalent durability problem in 
concrete infrastructure. The chemical and physical mechanisms 
leading to AAR damage of concrete remain poorly understood 
[1]. While broadly, AAR is acknowledged to be caused by reactive 
silica-containing aggregates, and exacerbated by high levels of 
alkalinity and moisture, more detailed understanding is still being 
developed, complicating efforts to develop general methods for 
AAR mitigation. In Finland in particular, the likely co-occurrence of 
AAR with other damage mechanisms (e.g., freeze-thaw damage) has 
even confounded efforts to diagnose this process, let alone mitigate 
it. In the absence of knowledge needed to predict AAR occurrence, 
data-driven machine learning (ML) methods offer an attractive, 
mechanism-agnostic approach that may achieve such predictions 
even while lacking detailed physical understanding. For example, 
ML methods have recently been demonstrated to make reasonable 
estimations of the 28 day compressive strength of concrete, from 
either mixture proportions [2], or cement composition and fineness 
[3]. Although limited application of ML methods to modelling 
of AAR has been attempted [4], these efforts have likely suffered 
somewhat from a reliance on largely synthetic, and possibly biased 
data, as well as relying on accelerated laboratory test methods. The 
current study focuses on a dataset acquired from inspection reports 
of several concrete bridge structures currently in service across 
Finland, with the aim of evaluating feasibility of such ML methods 
for the prediction and/or diagnosis of AAR under realistic operating 
conditions.

2 Background and machine learning 
procedures

2.1 Machine learning algorithms

Several recent studies have demonstrated the ability of bootstrap-
aggregated (or bagged) decision tree ensembles to accurately 
estimate compressive strength of concrete [2, 3]. These rule-based 
models identify logical splits in the data and partition the input 
space into a “tree” of decision nodes, which are then followed to 
arrive at predictions of a target data feature (i.e., “leaf nodes”) for 
each given set of input features. A collection, or ensemble of trees 
are constructed, with each tree then being trained on different 
subsets of the data and their results averaged to produce the final 
prediction [5]. Recent application of these models to concrete has 
largely been in the context of regression problems, i.e., prediction 
of a given property (e.g., compressive strength) as a continuous 
function of input variables. The success of such bagged decision tree 
ensembles for concrete datasets, which may have relatively high 
inherent variability, highlights their potential for successful extension 
to classification problems in this domain, i.e., as necessitated by the 
nature of the dataset currently under consideration for prediction 
of AAR incidence in Finnish bridges. As such, bootstrap-aggregated 
decision tree ensembles are the primary focus of the current study 
for classification of AAR. More specifically, two particular methods 
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for decision tree construction are given primary consideration due to 
their past success in the domain of concrete materials: (1) “random 
forest,” wherein a random subset of the input features is considered 
when determining the split at each decision node, and (2) “extra 
trees,” wherein the threshold for each split is also randomly 
determined (“extra” being a portmanteau of “extremely” and 
“randomized”). Other classification algorithms beyond these two 
were also examined, though it was confirmed that the “extra trees” 
type random forest model obtained the highest accuracy among 
these (see Section 3.1). All the algorithms and auxiliary functions 
used for classification were sourced from the scikit-learn library, and 
can be accessed and downloaded, along with their documentation, 
at http://scikit-learn.org/stable/.

2.2 Data collection and pre-processing

The dataset under consideration was provided by Väylävirasto, the 
Finnish Transport Infrastructure Agency. It originally consisted of 156 
data records, selected from bridge inspection reports collected on 

concrete bridge structures across Finland between the years 2016 
and 2018 to provide a representative sample of different regions 
and construction years (methods defined in [6, 7]). Data feature 
types represented in these original data records are listed in Table 1, 
along with several that were derived from these features for the 
purpose of this study. Several data records were noted to be missing 
some of these original features, and were omitted prior to data 
pre-processing, resulting in a new input set of 136 data records. 
Features which consisted of text were then converted to numerical 
values as follows:

1) Features descriptive of “types” of bridges (e.g., use, maintainer, 
etc.) were converted to integer values, with lower values 
arbitrarily assigned to those types that occurred first in a 
randomly shuffled list of the data records.

2) Features descriptive of “abundances” of materials (e.g., the 
occurrence of various rock types in concrete aggregates) 
were assigned integer values, with lower values assigned to 
relatively lower reported abundance (i.e., “none” = 0, “little” =1, 
“moderate” = 2, “abundant” = 3).

Table 1 Input features used to train machine learning models for classification of AAR gel (the target feature, shown in gray 
text). Features from the original bridge inspection reports are shown in plain text, while features determined from 
these reports for the purposes of the current study are shown in italic. The final set of nine features used as inputs for 
optimized classification models are underlined.

Type-Features Abundance-Features

Use (1-7) Thin Section Aggregate Rock

Maintainer (1-9) AAR Gel (0-3) Slate (0-3)

Environment (0-3) Cracking (0-2) Granite (0-3)

Marine Exposure (0-1) Air Voids (0-3) Gneiss (0-3)

Pre-stress (0-1) Ettringite (0-3) Amphibole (0-3)

Calcite (0-2) Meta-Tuff (0-3)

Numerical-Features Diabase (0-3)

Records Testing Visual Inspection Quartzite (0-2)

Year Built
Tensile Strength 

(Minimum)
Map Cracking
(0-2, RILEM)

Sandstone (0-1)

Year Inspected
Tensile Strength 

(Maximum)
Deformation
(0-2, RILEM)

Diorite (0-1)

Location (Latitude)
Carbonation Depth 

(Minimum)
Discoloration
(0-2, RILEM)

Phyllite (0-2)

Location (Longitude)
Carbonation Depth 

(Maximum)
Exudations

(0-2, RILEM)
Limestone (0-2)

Condition Score
Chloride Content 

(Mass % Concrete, Minimum)
Pop-Outs

(0-1, RILEM)
Gabbro (0-3)

Condition
Chloride Content 

(Mass % Concrete, Maximum)
Environment
(2-3, RILEM)

Mylonite (0-1)

Other Damages
(0-3)
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Numerical features that displayed low or zero variance (i.e., those 
that were nearly uniform across every data record) were omitted, 
following confirmation of negligible feature importance (as described 
in Section 3.2) to verify that they did not contribute significantly to 
classification accuracy. Remaining feature data was inspected to 
ensure that no unphysical or meaningless values were present (e.g., 
negative carbonation depths, etc.), of which none were found. Data 
records were also checked for duplicates, with none being found. 
Finally, the data records were randomly shuffled to avoid introducing 
inadvertent bias in the sampling of input attributes during model 
construction.

Several data features not typically included in inspection reports 
were also determined and included in the input dataset. These 
consisted of visual criteria for AAR diagnosis, determined according 
to RILEM guideline 6.1 [8], and assignment of numerical values to 
quantify observations of “other damage” (e.g., freeze-thaw damage) 
as provided from the bridge inspection reports. These additional 
features, which were assessed similarly to the original features 
descriptive of “abundances” as described in (2) above, are also 
included in Table 1, and distinguished from original inspection data 
using italic text.

2.3 Training of classification models

AAR gel abundance was chosen as the target feature because the 
available dataset contains no other features that would provide a 
simple (e.g., expansion), unambiguous indicator of AAR occurrence. 
Even if such features did exist, the available data are also lacking 
in important details relevant to prediction of concrete’s mechanical 
strength (i.e., cement composition, fineness and mixture proportions 
[2, 3]), which are likely necessary for ML to extrapolate from the 
presence of AAR gel to the manifestation of AAR-induced expansion 
and damage. Lastly, and of particular relevance to AAR incidence 
in Finland, AAR damage often occurs concomitantly with other 
damage mechanisms (e.g., freeze-thaw damage), making it difficult 
to even unambiguously link characteristic cracking patterns or 
other indicators with AAR. For these reasons, classification by AAR 
gel occurrence represents a small yet critical first step in moving 
toward models that would someday be able to predict the extent 
and kinetics of AAR damage.

Numerous ML classification models were constructed and applied 
to predict the abundance or occurrence of AAR gel. Training and 
testing of each model took between one-to-ten seconds, depending 
on the model used (i.e., for a personal computer with an Intel Core 
i5-8350u 1,7 GHz processor, and 8GB RAM). Performance of each 
classification model was evaluated using the prediction accuracy 
metric, i.e., what fraction of predictions on the test data produced 
the correct classification for AAR gel abundance (with accuracy 
ranging from 0 to 1, wherein a value of 1 would indicate that every 
prediction was correct). Both training and testing were conducted 
on different portions of data using a standard low-bias resampling 
procedure called k-Fold Cross-Validation [5]. The data records were 

randomly split into k = 10 “folds,” nine of which were used to train 
the model, and one of which was used to evaluate the model after 
training. The process was then repeated nine additional times, each 
time using a different fold as the test set, and the remaining nine 
folds as the training set.

The classification models used in this study were not noted to be 
sensitive to the magnitude of the data attributes, in the sense that 
they may potentially have been biased to assign more importance 
to attributes with inherently greater values. Nonetheless, to address 
this potential artefact, after the training and testing sets were 
identified and separated, the data for each attribute were rescaled 
to a standard normal distribution (mean = 0, variance = 1, i.e., using 
sklearn.preprocessing.StandardScaler). This step was taken after the 
separation of the training and testing sets to avoid data leakage (i.e., 
the unintentional passing of information about the test set to the 
training set), which could potentially happen if the combined testing 
and training data were rescaled together. In any case, no difference 
in model accuracy was found between results obtained with and 
without this rescaling procedure.

2.4 Hyper-parameter optimization

Following model selection and feature selection (detailed in 
Section 3.1 and 3.2), the most accurate model was optimized for 
the selected feature set in terms of its hyper-parameters (i.e., those 
that are set before model training, which dictate the speed and 
quality of the learning process), to arrive at a current best-in-class 
predictor of AAR occurrence (i.e., the occurrence or abundance of 
gel). This classification model, an “extra trees” type random forest 
model, contains two embedded hyper-parameters: (1) the number 
of data features considered at each “split” when building decision 
trees, and (2) the total number of decision trees. Additionally, the 
k-fold cross validation procedure contains a third hyper-parameter: 
(3) the number of “folds” into which the data is divided prior to 
construction of the training and test sets.

In the number of features per “split,” an optimum in accuracy for five 
features is observed (out of nine total features, selected as described 
Section 3.2). A similar optimum in accuracy occurs for six “folds” in 
cross-validation. This is likely due to the small size of the dataset being 
considered: whereas too few “folds” decreases the size of training 
sets to a degree sufficient to impair classification accuracy, too 
many decreases the likelihood that the test set will be representative 
of broader trends in the data. Lastly, accuracy plateaus with number 
of trees, with diminishing returns to adding decision trees beyond 
about 400 (for this specific dataset and ML model). Final models are 
limited to the use of 400 trees to avoid “overfitting,” i.e., building 
a model that sacrifices its ability to generalize to predictions on 
unseen data by too closely fitting the available data. Final values for 
each of the three optimized hyper-parameters with the “extra trees” 
model are marked in red in Figure 1, corresponding to five features 
per “split,” six “folds,” and 400 trees.
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3 Results and discussion

3.1 Ensemble models perform best for 
classification of AAR gel amount

Unsurprisingly, ensemble models of decision trees outperform most 
other classification models in predicting the abundance of AAR gel 
in the Finnish bridge concrete dataset (Table 2). Specifically, the 
“extra trees” random forest model provides the highest classification 
accuracy, both before and after the feature selection described in 
Section 3.2. This again highlights the ability of such models to 
perform well, even for data obtained from real concretes that may 
be prone to high inherent variability [2], a finding now borne out in 
the context of classification and AAR. Further consideration during 
feature selection and later steps of analysis is given only to the 

“extra trees” model, in the interest of defining an upper bound on 
AAR prediction accuracy that can be obtained using existing bridge 
inspection data.

3.2 Recursive feature elimination improves 
classification accuracy

The best performing classification model using all features of the 
bridge inspection dataset, an “extra trees” type random forest model, 
was able to obtain only an accuracy score of 0,649, corresponding 
to about 65% of correct predictions of AAR gel abundance. For 
comparison, the same classification model trained and tested using 
inputs where reported values of AAR gel abundance were randomly 
assigned to the data records yielded an accuracy score of 0,450, i.e., 
the worst-possible performance that could likely be achieved using 

Table 2 Accuracy of several common classification models when predicting AAR gel 
abundance. All models used are open-source, and their documentation can be 
found at http://scikit-learn.org/stable/.

Accuracy (0-1)

Classification Model After Feature Selection Before Feature Selection

Non-ensemble models

K-nearest neighbours 0,600 0,571

Logistic regression 0,630 0,565

Linear discriminant analysis 0,632 0,584

Support vector machine 0,683 0,580

Decision tree 0,676 0,515

Ensemble models

Bagged trees 0,670 0,612

Random forest 0,691 0,632

Gradient boosted trees 0,692 0,581

“Extra trees” random forest 0,728 0,649

(a)                                                                                            (b)                                                                                            (c)

Figure 1 The results of a representative hyper-parameter tuning exercise using the “extra trees” algorithm to classify bridge concretes 
for ASR gel occurrence, showing (a) an optimum of five features per “split,” (b) an optimum of six “folds” of data during cross-
validation, and (c) an optimum of 400 trees. Points shown in red indicate parameter values used for final models. Error bars 
represent the standard deviation between 20 separate train-test repetitions of the models.



70

Predicting the incidence of alkali-aggregate reaction in Finnish bridges with machine learning
Tandré Oey, Tapio Vehmas, Antti Torkki, Miguel Ferreira, Edgar Bohner 

rpee | Série III | n.º 15 | março de 2021

this dataset. While an accuracy of 0,649 is appreciably higher than 
this value, it is nonetheless desirable to further refine the “extra 
trees” model by performing feature selection.

Feature selection typically consists of sequentially removing various 
data features from the inputs, to identify features that may be (1) 
of negligible importance to predicting the target feature, or (2) 
detrimental to such predictions due to being redundant or partially 
redundant with other features (thus introducing bias). Two methods 
for such feature selection were tested, both of which fall under the 
umbrella of recursive feature elimination: omitting features one-by-
one and then determining which feature to eliminate from the model 
based on how much of a change in accuracy its omission produced. 
The default recursive feature elimination algorithm provided by 
the scikit-learn library sequentially eliminates the features whose 
omission produces the lowest absolute change in model accuracy. 
However, it was found that first eliminating those features whose 
omission produced increase in model accuracy (followed by those 
producing the lowest absolute decrease) led to a more accurate 
final model, as illustrated in Figure 2(a). As an example, omission 
of granite, quartzite, and sandstone abundance led to a roughly 
5% increase in classification accuracy, likely due to co-occurrence 
with other rock types (and thus redundancy with data features 
corresponding to those rock types). The final feature set arrived at 
via recursive feature elimination, consisting of nine data features 
(Figure 2(b)), resulted in a classification accuracy improvement for 
the “extra trees” model to 0,728, or about 73%.

3.3 Feature importances highlight need for 
improved monitoring practices

Feature importance, defined herein by the magnitude of accuracy 
loss (%) upon omission of a given feature from ML model inputs 
(Figure 2(b)), provides a rough indicator of which available data 
features one can expect to be most relevant to AAR incidence. Among 
the nine features remaining after recursive feature elimination, 
the extent of “map-cracking,” a feature often used to distinguish 
AAR occurrence by visual inspection, appears to be of primary 
importance. On the one hand, this lends credence to the RILEM 
method developed to evaluate such visible damage in concrete 
structures, by demonstrating a significant link with observed AAR gel 
formation. Additionally, model performance appears not to depend 
on the “other damage” feature, implying that such ML models 
represent a reliable means to distinguish AAR from other concurrent 
damage mechanisms (at least based on the current methods for 
evaluating such concurrent damage mechanisms). On the other 
hand the importance of “map-cracking,” along with minimum 
carbonation depth, implies that the current model depends strongly 
on observation of damage that has already occurred (i.e., rather than 
being able to estimate AAR risk a priori). While this link should be 
further explored, e.g., by pursuing more quantitative metrics for AAR 
damage such as via computer-aided image analysis or other non-
destructive testing techniques [9–11], it would ultimately be more 
desirable to train such models exclusively on data reflecting the 

(a)                                                                                                               (b)

Figure 2 Results of feature selection, demonstrating (a) the better classification accuracy achieved during recursive feature 
elimination by preferentially removing features whose omission improved the model prior to those that had 
negligible significance, and (b) the final “feature importances” of the nine features remaining after recursive 
feature elimination (i.e., all of which resulted in significantly reduced classification accuracy when omitted from 
the input data). The cumulative “importance” of the combined rock/mineral data (i.e., decline in accuracy when 
omitting gneiss, amphibole, meta-tuff, and gabbro together) is also shown for comparison. Error bars represent 
the standard deviation between 20 separate train-test repetitions of the models.
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state of the concrete before AAR damage has occurred (e.g., mixture 
proportions, aggregate mineralogy, etc.).

Importance of unexpected data features, specifically minimum 
carbonation depth and maintainer, may suggest either (1) the 
importance of “embedded” data, which correlates with these 
features but is absent from inspection records (e.g., moisture-
resistant coatings that may have been applied to the concrete 
by specific maintainers), or (2) artificial differences in data due to 
variable inspection methods (e.g., near-surface sampling that may 
have impacted AAR gel assessments due to carbonation). While it is 
currently impossible to distinguish between these two options, both 
point toward the need for more extensive record keeping and/or 
more standardized inspection and sampling procedures. This is likely 
all the more important for one feature that is conspicuously absent 
from the current dataset, yet widely acknowledged to play a critical 
role in AAR: moisture [1]. Although several features were present 
that may have been related to the bridge concrete’s moisture state, 
i.e., environment and location, neither was found to be necessary in 
accurately classifying bridge concretes by AAR gel abundance. This 
may of course be due to a similar moisture state among bridges 
because of the geographically limited nature of the dataset (within 
Finland), and it is likely that the current classification models would 
require more detailed data on the moisture state of concrete in order 
to be applied under circumstances where environmental conditions 
vary more widely.

Another factor expected to vary between concretes undergoing 
AAR is their stress state, or confinement, which has been reported 
to result in preferential expansion along the direction of minimum 
applied load (i.e., resulting in cracking primarily transverse to this 
direction [12]). Though past efforts to incorporate the influence of 
stress into understanding of AAR progression have mainly focused 
on mechanical effects [13], the importance of pre-stress to AAR 
gel abundance for the bridge concretes currently under study 
(Figure 2(b)) suggests that even this rough indicator of mechanical 
stress is significantly linked to chemical driving forces for AAR, i.e., 
those necessary to influence gel formation. Though it is difficult to 
comment further without more detailed data on the stress state of 
these concretes, this would be in line with reported mechanisms 
for chemo-mechanical coupling in mineral-water systems [14, 15], 
which have been employed to propose a dissolution-precipitation 
mechanism at the origin of concrete creep [16]. Current results 
indicate that more detailed investigation along these lines is 
merited, specifically the possibility that applied loads may influence 
dissolution and precipitation in the context of AAR.

Among the lowest “importance” values were assigned to the four 

rock/mineral features retained by the recursive feature elimination 
process. However, their cumulative importance was substantial 
(i.e., when all were omitted from the model), second only to the 
importance of the “map cracking” feature (Figure 2(b)). Obtaining 
more detail as to the AAR reactivity of these rocks/minerals thus 
represents a very promising area for future improvements in the 
accuracy of such models, in particular because they represent a 
pre-damage descriptor of potential AAR risk (as opposed to features 
reliant on existing AAR damage like cracking or carbonation). Recent 
work has shown success in linking aqueous reactivity to chemical 
structure for silicate materials, i.e., those most relevant to AAR due 
to their release of silicon upon dissolution [17, 18]. To illustrate the 
potential of this concept, several simple assumptions were tested 
regarding the reactivity of each rock type or mineral provided in the 
input data:

1) Cumulative contribution to “reactivity,” as relevant to AAR, was 
assumed to be proportional to the reported abundance of each 
rock type or mineral (i.e., with reactivity being calculated as a 
weighted average as outlined in Equation 1 below).

2) “Reactivity” of each rock type, constituted of several minerals, 
was assumed to be dictated by the most abundant of these 
minerals in a typical specimen of the given rock (e.g., orthoclase 
for granite, plagioclase for diorite, pyroxene for gabbro, etc.).

3) “Reactivity” of each silicate mineral (whose structures are 
defined by SiO4 tetrahedral units, Figure 3) was assumed 
to be inversely proportional to the average number of inter-
tetrahedral bonds within its chemical structure, i.e., 4 for 
orthosilicates, 2 for single-chain silicates, 1,5 for double-
chain silicates, 1 for sheet silicates, and 0 for tectosilicates 
[19]. This is an extension of the idea that silicon dissolution 
is required for AAR to occur [1], and furthermore that silicon 
dissolution proceeds via sequential breaking (hydrolysis) of 
inter-tetrahedral Si-O-Si bonds [17]. Such a formulation is the 
equivalent to the average number of “non-bridging” oxygen 
atoms that make up the corners of the SiO4 tetrahedral units in 
silicates [20], as illustrated in Figure 3.

4) “Reactivity” of each non-silicate mineral (i.e., calcite, from 
limestone) was assumed to be 0.

"Si-Bonding Weighted Average" = 
i

i i

i
i

A N

A

∑
∑

1

1

 (1)

where Ai is the reported abundance for mineral i, and Ni is the average 
number of “non-bridging” oxygen atoms per tetrahedral unit in the 
mineral’s molecular structure (or 0, for non-silicates).

(a)                                            (b)                                             (c)                                                                       (d)

Figure 3 Illustrations of local molecular structure of (a) an SiO4 tetrahedral unit, and such units in (b) an orthosilicate: 
0 inter-tetrahedral bonds, 4 “non-bridging” oxygens per unit; (c) a single-chain silicate: 2 inter-tetrahedral 
bonds, 2 “non-bridging” oxygens per unit; and (d) a double-chain silicate: alternating between 2 and 3 inter-
tetrahedral bonds, 2 and 1 “non-bridging” oxygens per unit, etc.
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The end result of the simple assumptions outlined above regarding 
the influence of silicate aggregates’ chemical structure on their AAR 
reactivity is a weighted average (Equation 1), meant to reflect the 
cumulative influence of each rock type or mineral on the formation 
of AAR gel. As demonstrated by Figure 4(a), this “Si-bonding 
weighted average” produced models with comparable classification 
accuracy when substituted for the raw data on rock type and mineral 
abundance in ML inputs. The surprising success of even these very 
simple assumptions in distilling the data from rock and mineral 
abundance to a single descriptive parameter, without sacrificing 
classification accuracy, highlights that improved aggregate 
characterization methods, e.g., reporting mineralogy data rather 
than just rock types, hold great potential to improve such predictive 
modelling efforts.

Though not reflected among the importances of individual data 
features, the number of data records available should also be noted 
for its substantial influence on the quality of current classification 
models. The dataset under consideration, consisting of only 136 
data records (i.e., data from each of 136 unique bridge inspection 
reports), is quite small relative to the size of datasets typically 
utilized for training ML models. Though recent work has highlighted 
the ability of such models to perform well even with only a few 
hundred data records [3], it is nonetheless expected that the AAR 
gel classification models would continue to improve as more data 
becomes available. To illustrate this point, “learning curves” were 
constructed by sequentially omitting full data records from the 

inputs (Figure 4(b)). It can be seen that, though current models 
are unstable (accuracy fluctuates with small perturbations to input 
data), there is a consistent improvement in accuracy with the 
inclusion of increasingly more data records. The lack of a “plateau” 
in such a learning curve for the current, limited dataset suggests the 
likelihood that provision of even more data to the model would, in 
fact, be able to produce additional accuracy improvements.

3.4 Addressing imbalance in AAR gel class 
distribution improves accuracy

Though accuracy improvements often necessitate the provision 
of greater amounts of more detailed data, it is important to 
recognize that this is not always the case [3]. As an example, skewed 
distributions between the classes in the target feature (AAR gel 
abundance) could be expected to somewhat bias the model toward 
predicting the occurrence of no AAR gel, as this is the majority class 
(Table 3). For comparison, prediction of only the absence of AAR gel 
would result in a classification accuracy of 58%. Two methods have 
been investigated to deal with this possible class bias in ML models: 
(1) binarization of the classes, i.e., shifting from consideration of how 
much AAR gel has formed to the simpler consideration of whether 
any has formed or not; and (2) stratification of the “folds” during 
k-fold cross validation, i.e., ensuring that each subdivision of the 
data used to train and test the models contains an equal number of 
members of each target feature class.

(a)                                                                                                               (b)

Figure 4 (a) ML classification accuracy following recursive feature elimination (i.e., “Top-9 Manual” from Figure 2(a)) as 
compared with other ML models wherein (1) all rock and mineral data features were omitted from the inputs, 
and (2) the “Si-bonding weighted average” was re-introduced to the inputs following such omissions. Error bars 
represent the standard deviation between 20 separate train-test repetitions of the models. (b) Classification 
accuracy as a function of the total number of data records used in ML inputs, i.e., an illustrative “learning curve” 
for the ML classification models. 
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Binarization of target feature data from AAR gel abundance to AAR 
gel occurrence does somewhat reduce the class imbalance problem 
(Table 3). This results in a marked improvement in model accuracy 
to about 80% (Figure 5(a)), and may also benefit from the fact that 
such binarization helps simplify the evaluation of AAR by obscuring 
any bias accompanying inter-operator variability in quantification of 
gel abundance from thin section analyses (i.e., removing the degree 
of subjectivity associated with what any given bridge inspector 
regards as “little” relative to “moderate” AAR gel). Stratification 
during cross-validation produces a similar improvement in accuracy 
to about 78%, or 82% with the combination of both binarization 
and stratification (Figure 5(a)). This result highlights that current ML 
classification models are at present best-suited to use as binary AAR 
diagnostic tools, which identify whether observed damage can be 
attributed to AAR rather than some other mechanism. Furthermore, 
it highlights the importance of providing such models with balanced 
training data, i.e., indicating the need for preferential collection of 
data from concrete structures that experience AAR, and even more 

so from those that experience moderate-to-abundant formation of 
AAR gel. While over-sampling or under-sampling are also known to 
help reduce such bias [3], i.e., by preferentially including duplicate 
data records of underrepresented classes or excluding data records 
of overrepresented classes, neither of these methods were found to 
be feasible for the current dataset due to its relatively small size.

To verify that class imbalance had been suitably addressed by 
binarization, the specific nature of each correct or incorrect 
classification by the model was examined (Figure 5(b)). For example, 
if the model was biased to preferentially classify data records as 
having no AAR gel due to this being the majority class, many of 
its classifications would be false negatives, i.e., they would predict 
no AAR for concrete where in reality AAR had occurred. Grouping 
predictions as such yields four types: true negatives (correct 
predictions of no AAR), true positives (correct predictions of AAR), 
false positives (incorrect predictions of AAR), and false negatives 
(incorrect predictions of no AAR). Looking at the split between true 
positives and true negatives in Figure 5(b), these appear to be in 

Table 3 Class distributions for the originally marked dataset according to AAR gel 
abundance, and the new class distribution after application of binarized 
class markings based on AAR gel occurrence.

AAR Gel Abundance Class Distribution AAR Gel Occurrence Class Distribution

Class Population Class Population

“None” (0) 79 “None” (0) 79

“Little” (1) 45 “Any” (1) 57

“Moderate” (2) 11

“Abundant” (3) 1

(a)                                                                                                               (b)

Figure 5 (a) A comparison in classification accuracy between models with stratified and un-stratified cross-validation for 
classifying AAR gel abundance (four classes) or occurrence (two classes). (b) The distribution among classification 
predictions by correctness as well as class, e.g., making the additional distinction between incorrect predictions 
for those which did or did not truly have AAR gel. Error bars represent the standard deviation between 20 separate 
train-test repetitions of the models.
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rough proportion to the class distribution between concrete with 
and without AAR gel, respectively. This result confirms that class bias 
has been largely addressed by binarization and stratification for the 
current dataset and ML models.

It should also be noted, however, that the “cost” of the various 
types of predictions has not been factored into current ML models. 
For example, a model that falsely suggests AAR has occurred when 
in reality it has not may be deemed as less of a risk than a model 
that falsely suggests AAR has not occurred when in reality it has. 
This highlights a promising area for future research regarding use 
of ML for AAR risk assessment: rather than using algorithms that 
maximize the number of correct predictions, they could instead 
minimize the number of false negatives (or any other type of 
prediction). In the current case of AAR evaluation in concrete, this 
would mean the difference between the minor short-term cost of 
applying unnecessary AAR mitigation measures, and the potentially 
catastrophic long-term cost of structural failure. In this light, if one 
includes false positives in the calculation of accuracy for the current 
best-in-class model, it performs at 90% “reliability,” only failing to 
detect AAR 10% of the time. Likewise, in the pursuit of a predictive 
rather than a diagnostic model for AAR (i.e., one not dependent on 
observation of damage), even previously “poor” models perform 
somewhat well. When the rate of false positive predictions is 
combined with classification accuracy, a model trained to make 
binary predictions for AAR incidence without the “map cracking” 
and carbonation depth features performs with a “reliability” of 
85%. This is promising in that, even without improvements in the 
size or quality of input data, new ML algorithms for cost-sensitive 
optimization may also have the potential to improve reliability of 
AAR classification to the point required for their more widespread 
use in risk assessment or mix design.

4 Summary and conclusions
This study evaluated the feasibility of applying ML methods to 
the prediction and/or diagnosis of AAR in concrete under realistic 
service conditions. It was found that using an “extra trees” type 
random forest algorithm, an accuracy of 78% could be achieved 
when classifying concretes by AAR gel abundance. This accuracy 
was improved to 82% when applied to the simpler classification 
of the existence (or not) of AAR gel in the concretes, and to 90% 
when factoring in the relatively lower “cost” of falsely predicting the 
occurrence of AAR (relative to that of falsely predicting that AAR did 
not occur).

Several significant trends in the importance of various data features 
were also highlighted, particularly the promise shown by an exercise 
to incorporate a more detailed understanding of aggregate reactivity 
while maintaining model accuracy. These trends suggest the need 
for both:

(1) More thorough record keeping of concrete’s raw materials, 
particularly with regard to details about the cement composition, 
mixture proportions, and aggregate mineralogy, and

(2) More in-depth monitoring activities, particularly of the moisture 
and stress states of the concrete.

While the AAR classification models currently seem best-suited 
to limited diagnostic use, i.e., to facilitate more confident and 
rapid deployment of AAR mitigation measures, their accuracy and 
applicability is likely to improve upon the development of either:

(1) Larger, more detailed datasets, and/or

(2) Improved “cost-sensitive” ML algorithms, potentially qualifying 
them for future application to risk assessment or even concrete mix 
design.
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